
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Algorithmic Reformulation of Polynomial Problems

Brown, Christopher W.

USNA-CS-TR-2007-01

June 13, 2007

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 JUN 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Algorithmic Reformulation of Polynomial Problems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Naval Academy,Computer Sciences Department,Stop
9F,Annapolis,MD,21402

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

27

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Algorithmic Reformulation of Polynomial

Problems

Christopher W. Brown

Department of Computer Science, Stop 9F

United States Naval Academy

Annapolis, MD 21402, USA

wcbrown@usna.edu

June 13, 2007

Abstract

This paper considers the problem of existential quantifier elimination
for real algebra (QE). It introduces an algorithmic framework for exploring
reformulations of QE problems, with the goal of finding reformulations
that make difficult problems tractable for QE implementations, or for
which these implementations find simpler solutions. The program qfr is
introduced, which implements this approach, and its performance on some
example problems is reported.

1 Introduction

“Why do it like a human when you can do it right.” — Joel Moses

The above quote is indicative of a philosophy underlying computer algebra.
We don’t emulate human methods of solution in our algorithms for problems
like integration, summation, factorization, solutions of systems of polynomial
equations and a host of other problems. In fact, humans aren’t very good at
these problems, while computer algebra programs have proven to be remarkably
effective. Why approach a mathematical problem like a person? Why not do it
right?

This paper considers a very fundamental problem — quantifier elimination for
the first order theory of real algebra. Roughly speaking, this means determining
the satisfiability of systems of polynomial equalities and inequalities over the

1

reals, where the polynomials involved may have coefficients that are expressions
in some parameters. When coefficients are rational functions of the parameters,
this problem is solvable, and there has been a lot of work over many years on
algorithms and software for doing it. The general approaches taken — Tarski’s
original approach [11], Collins’ cylindrical algebraic decomposition [5], and the
“root counting” approach of Weispfenning [15] and of Heintz, Roy and Salerno
[9] — are typical of computer algebra in that they do not emulate the ways in
which people solve such problems.

The thesis of the paper is that this subject would benefit from a bit of trying
to “do it like a human” rather than just “doing it right”. While it is true that
humans are not good at solving these problems, neither are machines. The
fundamental problem is computationally intractable in any traditional sense.
What humans can do, however, that these algorithms cannot, is flexibly exploit
problem-specific structure — the kind of structure that real-world problems
have. The following problem, which comes from epidemiological modeling [12],
is such an example.

∃S, E, I, T

d − dS − β1IS = 0 ∧ vE − (d + r2)I = 0∧
β1IS + β2IT − (d + v + r1)E + (1 − q)r2I = 0∧
−dT + r1E + qr2I − β2TI = 0 ∧ E > 0 ∧ I > 0 ∧ T > 0 ∧ S > 0

where d > 0 ∧ v > 0 ∧ r1 > 0 ∧ r2 > 0 ∧ q > 0 ∧ β1 > β2 > 0

None of the software systems we have tried on this problem1, as formulated,
can solve it — at least not in the amount of time we were willing to wait.
However, in the cited paper, the authors solve it by hand. Several [all?] of the
above systems can be coaxed into solving the problem if we first do what any
normal person would do: solve for linearly occurring variables and substitute.
Doing this, which is a bit tedious, we can eliminate all but one of the variables.
Software can take care of the last one.

Actually, there is another sense in which the way people solve problems like
the above is better than that of our algorithms: people produce simple an-
swers. In solving such problems we seek out steps that keep expressions simple,
and we systematically exploit the problem’s structure to rule out special cases,
which has a lot to do with our ability to solve these problems while automated
procedures fail.

This paper’s major goal is to provide an efficient algorithm/data-structure foun-
dation for attacking these problems in a human-like manner inside a program.

It is important to note that we are not suggesting that quantifier elimination
problems be solved solely by mimicking people, rather that programs should try

1We tried: QEPCADB v1.45, Redlog v3.0, Mathematica v5.2 and the RS function of the
Salsa Maple packages from INRIA.

2

to exploit problem-specific structure like people do. Typically, this will generate
one or more simpler quantifier elimination problems that would then be solved
by regular quantifier elimination programs. It is also important to note that this
approach has nothing to offer for many kinds of QE problems. Higher degree
problems, problems without equations, very generic problems ... problems like
these that humans can’t make much progress with will not benefit. However,
we will exhibit a variety of application problems from diverse sources that our
approach does apply to, and does succeed, in combination, with other programs,
to give good quantifier free solutions in a reasonable amount of time.

1.1 A more precise formulation of the problem

The kind of human problem solving we are trying to emulate basically amounts
to rewriting or reformulating existential quantifier elimination (QE) problems.
Starting with an initial problem, we eliminate variables by substitution when
they occur linearly in equations; we split into cases depending on, for example,
whether a leading coefficient is zero or not; we remove redundancies like 0 < b
in a < 0 ∧ b < 0 ∧ a < b; and much more in the same vein. We arrive at one or
more simpler (we hope!) problems that we can’t do any more with, and these
will have to be solved by other methods. Thus, the fundamental problem is
this: Given an existential QE problem P and a set of rewriting operators, find
the “best” reformulation of P as one or more simpler QE problems.

Ultimately, one would be interested in finding the best rewriting — or even
just a good rewriting — quickly. For this paper, however, we only consider the
problem of generating all rewritings and finding the best. Our main result is
an algorithm that efficiently searches the space of all rewritings of a given QE
problem to find the one that is “best” with respect to a suitable metric. This
algorithm provides a method for comparing fast, heuristic-based algorithms for
rewriting in future work, and a foundation on which such algorithms can be
based.

2 The “space of rewritings”

One of the basic concepts behind the AI search paradigm is that of the state
space. An initial state and a set of operators that map states to potential
successor states together generate a state space. In our case, states are formulas.
The initial state is the input formula, and operators produce new formulas that
are logically equivalent over the reals. One such operator, for example, rewrites

formulas of the form ax+b = 0∧F as
(

a 6= 0 ∧ F |x←−b/a

)

∨(a = 0 ∧ b = 0 ∧ F).

The basic idea is, starting with an input formula and a set of rewrite operators,

3

to explore the state space and return the rewriting that we deem to be “best”.
This differs from the usual AI search scenario, because there’s no goal test —
there’s no way to look at a single state in isolation and determine that it is “the
answer”.

There are many rewritings that are completely uninteresting. For example,
rewriting f5 > 0 as f3 > 0 isn’t interesting. In fact, we have no reason to ever
want to see either expression in any formula, since they are both equivalent to
f > 0. As another example, consider F ∨ x2 + 1 < 0 ∧ G. Any rewritings of G
are completely uninteresting, since the disjunct it is part of is equivalent to false
anyway. Rewriting G is a waste of time and space. What these two examples
point to is the need to distinguish between what we call “normalization” and
the rewritings performed by operators. Normalization involves rewritings we
will always want to carry out: e.g. f5 > 0 −→ f > 0, or x2 + 1 < 0 −→ false.
Rewrite operators carry out rewritings that are not always desirable.

Another issue is the need recognize states that are the same as states that have
already been processed. In different search contexts, “the same” might mean
different things. In our context, all states are logically equivalent over the reals,
so defining “the same” too deeply is counterproductive. We take “the same” to
mean syntactically identical after normalization.

The straightforward approach to generating the space of rewritings then is given
in Algorithm 1. If no operator introduces disjunctions, this kind of search

Algorithm 1 Naive exploration of the space of rewritings.

1: enqueue F in A
2: while Q not empty do

3: G := dequeue Q
4: for each rewriting operator application op do

5: G′ := result of applying op to G
6: G′′ := normalization of G′

7: enqueue G′′ in Q (unless G′′ has already been generated)

might be reasonable. However, when disjunctions can be introduced (and this
is the case with most interesting operators), this naive search suffers from two
debilitating sources of inefficiency: Suppose F1 ∨ F2 ∨ · · · ∨ Fk is a formula
encountered during the search.

1. If op1, . . . , opk are operators such that opi acts on disjunct Fi, there are 2k

distinct formulas generated by different orders of applying the operators
(barring coincidental duplications). In other words, even though there is
one “destination”, namely op1(F1) ∨ op2(F2) ∨ · · · ∨ opk(Fk), there are 2k

steps if you traverse all possible paths getting there, because of all the
different orders one can use to apply operators.

4

2. If, for each i, there are si operators that can be applied to Fi, then even
forgetting about the orders in which operators are applied to disjuncts,
there are (1 + s1)(1 + s2) · · · (1 + sk) ways that a new formula can be
generated by applying no more than one operator do each disjunct.

Of course, these two factors combine to produce an enormous number of possible
rewritings. Moreover, in neither case have we considered applying a rewrite
operator to the result of a rewrite operator — e.g. “substitute x = −b/c into F
then substitute y = −d/e in the result”.

As described in [3], Christian Gross implemented a heuristically guided ver-
sion of above algorithm, which prunes away parts of the search tree based on a
function for “grading” formulas. This program is able to find good rewritings
for several interesting inputs, but only when they are relatively easy to find,
since the space it has to search is so vast. In fact, it discovers very few dis-
tinct formulas, spending most of its time discovering duplicates. Moreover, the
only operators it includes are factor splitting for equations and linear substitu-
tion. Presumably, incorporating more operators would exacerbate the problems
associated with search space size.

Gross’s implementation is intended to serve as a “preprocessor” for quantifier
elimination program; primarily for QEPCADB, but also for Redlog or Math-
ematica. For several problems from different domains, it is able to find an
input rewriting that make an intractable problem tractable for these systems,
or improve the quality of answer. Both the successes of this program and its
shortcomings motivate the search for a better approach to exploring the space
of rewritings.

3 Searching more efficiently

The first idea for improving the search through the space of rewritings is to
decouple disjuncts in a formula. The two major factors cited in the previous
section can both be avoided by searching for rewritings of disjuncts indepen-
dently. Given formula F ∨G, we generate the set SF of rewritings of F and SG

of rewritings of G. These two sets represent the |SF | · |SG| rewritings obtained
by forming the disjunction of an element of SF and an element of SG. Of course,
this process is recursive, meaning that in searching for rewritings of F or G we
might form new disjunctions, and we should treat the search for rewritings of
each disjunct as independent problems.

The second idea for improving the search is that since we expect to generate
the same disjuncts in different ways, and since we expect to discover that some
disjuncts are unsatisfiable, we should be able to exploit of such information.

5

F1, F2

H1, H2G1, G2

Figure 1: A simple rewrite graph representing the following formulas as equiv-
alent: F1, F2, G1 ∨ H1, G1 ∨ H2, G2 ∨ H1, G2 ∨ H2.

In the next section we describe a data structure, the “rewrite graph”, that
allows us to implement the above ideas and thus to search much more ef-
fectively. Nodes in this graph are either Q-nodes, which represent a set of
equivalent formula, or OR-nodes which represent disjunctions. The simple
graph in Figure 1 represents the following formulas, all of which are equiva-
lent: F1, F2, G1 ∨ H1, G1 ∨ H2, G2 ∨ H1, G2 ∨ H2. We also show how this data
structure can be reorganized when a formula in a node is found to be false,
or when two nodes are found to contain the same subformula. We will then
reformulate our search as the process of choosing an unprocessed formula from
some Q-node in the rewrite graph, applying operators to it and modifying the
graph accordingly. An implementation of this approach is described later in the
paper, along with some empirical results on its performance.

4 The primary data structure

If S is a set of equivalent formulas then, abusing notation a bit, we will allow S
to appear as a formula in expressions, with the same meaning as using any one
of its elements in its place.

Let F be an existentially quantified formula with free variables x1, . . . , xk and
bound variables xk+1, . . . , xn. We describe a data structure called a rewrite
graph (RG).

Definition 1 A Rewrite Graph (VQ, VOR, E, S) is a directed acyclic, bipartite
graph (VQ, VOR, E) with function S that maps elements of VQ to Tarski formu-
las, such that:

• For “Q-node” v ∈ VQ, all elements of S(v) (which we sometimes write
Sv) are mutually equivalent.

6

• If “OR-node” w ∈ VOR is a child of Q-node v, and Q-nodes u1, . . . , ua are
the children of w, then S(v) ⇔ ∨a

i=1 S(ui).

Rewrite graphs give us a compact way to represent a very large number of
rewritings of a formula. The following definition and theorem make that precise.

Definition 2 Given rewrite graph G = (VQ, VOR, E, S), define the function H
mapping vertices into Tarski formulas as follows:

1. If v is a Q-node with children w1, . . . , wa,
H(v) = S(v) ∪ H(w1) ∪ H(w2) ∪ · · · ∪ H(wa).

2. If w is an OR-node with Q-node children u1, . . . , ua,
H(w) = {∧a

i=1 fi | (f1, . . . , fa) ∈ H(u1) × · · · × H(ua)}.

Theorem 1 Given rewrite graph G = (VQ, VOR, E, S) and node v ∈ V , every
formula in H(v) is equivalent.

Proof. This is an obvious consequence of the definition of rewrite graphs.

The general idea is that we start with some formula F and construct a rewrite
graph G, rooted at node r, such that F ∈ S(r). Then H(r) gives the set of
rewritings of F .

We will allow ourselves a further abuse of notation by using RG-nodes as for-
mulas, e.g. x1 > 0 ∧ v, where v is an RG-node. In this context, v has the same
meaning as any element of H(v).

RG’s play a key role in our algorithm for exploring rewritings of an existentially
quantified formula. Not only do they provide a compact representation of a
large number of possible rewritings, they give a context to information that
gets discovered during the rewriting process, which allows us to exploit such
discoveries.

Theorem 2 Let G = (VQ, VOR, E, S) be a rewrite graph.

1. For any i, 1 ≤ i ≤ k, and α ∈ R, G|xi=α = (VQ, VOR, E, S′), where
S′(v) = {f |xi=α | f ∈ S(v)}), is also a rewrite graph. Essentially this
says that assigning a value to a free variable in a rewrite graph yields a
rewrite graph.

2. If for Q-nodes u, v ∈ VQ we have Su ∩ Sv 6= ∅, Sv ⇔ Su.

7

3. If for Q-node v any element of Sv is found to be equivalent to false, then
v and all descendent nodes are equivalent to false.

4. If for Q-node v any element of Sv is found to be equivalent to true, then
all nodes along any path to v are equivalent to true.

5. Let v1 → w1 → v2 → · · · → ws → vs+1 be a path in G, where Q-
nodes v1 and vs+1 are known to be equivalent. Then v1, v2, . . . , vs, vs+1

are all equivalent. (From which it trivially follows that w1, . . . , ws are all
equivalent to v1, . . . , vs+1.)

Proof. The first four points are easily seen to be true, so we only explicitly
prove the last point. We will show that v1 ⇔ vs, and the conclusion follows by
induction. In fact, it suffices to show that v1 ⇔ ws, since by our hypotheses
vs ⇔ ws. So, let α be a point in free-variable space. If v1|α is true then vs+1|α is
true, by hypothesis, and that in turn means ws|α is true, since vs+1 is a disjunct
of ws. Conversely, if ws|α is true, then vs|α is true, which means that, by point
1 and 4, v1 is true.

4.1 Reduced rewrite graphs: exploiting what we learn

about formulas

In exploring the space of rewritings of a formula, two events can occur that
provide information that we would like to exploit: we may discover that some
formula is unsatisfiable, or we may discover that two formulas obtained through
different rewritings are identical. The rewrite graph allows us to exploit this
information.

Definition 3 A Reduced Rewrite Graph (RRG) is a rewrite graph satisfying
some additional restrictions:

1. There is no vertex v ∈ VQ such that S(v) contains true or false.

2. There are no two vertices u, v ∈ VQ such that S(v) ∩ S(u) 6= ∅.

3. There are no two vertices in VOR with the same out-neighbor set.

4. Each vertex in VOR has a unique in-neighbor.

5. Each OR-node has at least two children.

The motivation for this definition is the goal of keeping the rewrite graph as
simple as possible while still describing all of the same “interesting” rewritings.

8

Rewritings with constants, known redundancies, or inconsistencies are not “in-
teresting”. Point 1 of the definition means we don’t allow constants, points 1 & 4
mean that we don’t allow distinct but obviously equivalent Q-nodes, and point
3 means we don’t allow distinct but obviously equivalent OR-nodes. Nicely
enough, Theorem 2 provides us with the tools we need to algorithmically trans-
form an arbitrary rewrite graph into a reduced rewrite graph. The principal
work in that process is done by Algorithm 2.

Algorithm 2 takes as input a rewrite graph G = (VQ, VOR, E, S) and a queue
Q of assertions of the form (a, b), where a, b ∈ VQ ∪ {false}. Extending the
function S by defining S(false) = {false}, assertion (a, b) is the statement
S(a) ⇔ S(b). The algorithm transforms G by deleting any nodes asserted to be
false, and merging any nodes asserted to be equivalent. However, it accomplishes
this in such a way that G remains a rewrite graph. Moreover, in this process
no rewritings are “lost”. More precisely, if a rewriting is represented by G,
the same rewriting exists in the RG produced by the algorithm — except that
some disjuncts may be removed if the assertions in Q and/or the structure of
G determine that they are redundant.

One complicating issue in presenting Algorithm 2 is that as nodes are merged
or deleted, the node names in Q may become stale. For example, if (a, b) is
dequeued, where a and b are nodes, but node b has already been merged with
other nodes, what do we do? The algorithm deals with this by keeping track of
“aliases”. If node a is deleted because a was asserted to be false, the name a
is then considered to be an alias for false. If node b is merged with others into
a new node c, then b is considered to be an alias for c. When a possibly stale
name a is encountered, the algorithm simply asks for the true name of a before
doing anything. The functions record and trueName provide this bookkeeping.

Theorem 3 Let G = (VQ, VOR, E, S) be a rewrite graph with root r, and sup-
pose Q contains (u1, v1), . . . , (uk, vk). Let G′ = (V ′Q, V ′OR, E′, S′) be the graph
resulting from applying Algorithm 2 to G and Q.

1. G′ is a rewrite graph under the assumption
∧

(ui ⇔ vi)

2. For 1 ≤ i ≤ k, trueName(ui) = trueName(vi) after Algorithm 2 finishes.

3. if C1 ∨ . . .∨Cm ∈ HG(r), then HG′(trueName(r)) contains some formula
Ci1 ∨ · · · ∨ Cin

, where {i1, . . . , in} ⊆ {1, . . . , m}, such that

∧

(ui ⇔ vi) =⇒ (C1 ∨ . . . ∨ Cm) ⇔ (Ci1 ∨ · · · ∨ Cin
)

Proof. First we observe that the algorithm terminates. At every iteration an
element is dequeued from Q. In trivial iterations, i.e. when u = v in line 4,

9

Algorithm 2 Reorganize G = (VQ, VOR, E) based on Q, a queue information
elements from (VQ ∪ {false})2
1: while Q not empty do

2: (u, v) := dequeue(Q)
3: u := trueName(u), v := trueName(v)
4: if u = v then continue
5: if v = false then swap(u, v)
6: if u = false then

7: record(v, false), i.e. record that v is an alias for false
8: for each child w of v do

9: for each child x of w do

10: enqueue((false, x), Q)
11: for each parent v′ 6= v of w do

12: enqueue((false, v′), Q)
13: delete v
14: else

15: set WQ to the set of all Q-nodes along paths from u to v or v to u
16: set WOR to the set of all OR-nodes along paths from u to v or v to u
17: let x be a new Q-node and define S(x) =

⋃

t∈{u,v}∪WQ
S(t)

18: for each s ∈ VQ − WQ such that (s, w) ∈ E, for some w ∈ WOR do

19: enqueue((s, x))
20: delete all nodes in WOR

21: for each w ∈ WQ ∪ {u, v} do

22: record(w, x), i.e. record that w is an alias for x
23: contract the elements of {u, v} ∪ WQ into the new node x
24: delete any nodes that are unreachable from the original root

10

nothing is enqueued in Q. In each non-trivial iteration, the number of nodes in
the graph decreases, thus the algorithm terminates.

Second we prove that G′ is acyclic. Note that line 23 is the only place in
the algorithm with the potential to introduce cycles, since the other lines that
modify the graph only delete edges or nodes. If the contraction of the elements
of WQ into a single node were to create a cycle, it would have even length (since
the contraction maintains the bipartite nature of the graph) and it would have
to contain a vertex outside of WQ ∪ WOR, since we’ve deleted the edges from
WQ into WOR. If such a cycle exists, then contracting WQ ∪WOR into a single
node (and deleting edges from that node to itself) would produce a graph with
a cycle (derived from the other cycle), which Lemma 1 proves is impossible.

Next we prove that for each v ∈ V ′Q, all elements of S′(v) are equivalent given
∧

(ui ⇔ vi). This requires showing that our graph modifications are valid given
the assertions in Q, and that any new assertions we add to Q are valid. For an
assertion of the form “node v is false”, our only action on the graph is to delete
every edge into v. Since all such edges are from OR-nodes, this is equivalent
to removing v from a disjunction, which is valid given the assertion. Any child
w of v is an OR-node which, by definition, is equivalent to v and therefore is
equivalent to false. This triggers two kinds of new assertions: first that any
child of w is false, which is valid since a disjunction is false if and only if each
disjunct is false, and second that any other parent of w is false, which is clear
since an OR-node is equivalent to its parent. These are exactly the assertions
added by the algorithm.

For an assertion of the form “nodes u and v are equivalent”, we do more. Point
5 of Theorem 2 shows that all nodes that are on paths from u to v or v to u
are equivalent — these are WQ ∪ WOR. Any parent of an element of WOR is
clearly equivalent to the elements of VQ, so the new assertions added in line
22 are justified. The algorithm deletes all nodes in WOR, then contracts WQ

into a single new vertex x. Clearly contracting WQ into a single new node is
justified. Deleting WOR is justified by the observation that any w ∈ WOR has
a parent a ∈ VQ and a child b ∈ VQ and, by Theorem 2, a ⇔ w ⇔ b. Thus, we
can eliminate all children other than b from w without changing its meaning,
at which point w provides no information other than that a ⇔ b, which the
contraction makes explicit, and that any other parent of w is equivalent to b
which the contraction and/or the assertions previously added make explicit.
This concludes the proof of Point 1.

Point 2 is clear from the fact that the algorithm only terminates when the queue
is empty, which means that all the input assertions have been processed. Point
3 essentially asserts that all the rewritings represented in G are represented in
G′, except that some redundant disjuncts may have been deleted. This should
be clear, though we point out that new rewritings may be represented in G′.

11

Algorithm 3 uses Algorithm 2 to transform a rewrite graph into an equivalent
rewrite graph. Essentially, all it has to do is detect violations of the conditions
from the definition of reduced rewrite graph, convert them into assertions in a
queue, and call Algorithm 2 to reorganize the graph based on the assertions.

Algorithm 3 Rewrite graph to reduced rewrite graph. Input: G =
(VQ, VOR, E, S), a rewrite graph with root node r ∈ VQ. Output: G is trans-
formed into an equivalent reduced rewrite graph. Note: Assume for all v ∈ VQ,
true /∈ S(v).

1: while G is not reduced do

2: set Q to an empty queue
3: for all v ∈ VQ such that false ∈ S(v) do

4: enqueue((false, v)) in Q
5: for all u, v ∈ VQ such that S(u) ∩ S(v) 6= ∅ do

6: enqueue((u, v)) in Q
7: for all w, x ∈ VOR such that w and x have the same out-neighbor set do

8: for each in-neighbor u of x, add edge (u, w)
9: delete x

10: for all u, v ∈ VQ that share out-neighbor w ∈ VOR do

11: enqueue((u, v)) in Q
12: for all w ∈ VOR with no out-neighbors do

13: for each u with an edge to w enqueue((false, u)) on Q
14: delete w
15: for all w ∈ VOR with exactly one out-neighbor v do

16: for each u with an edge to w enqueue((u, v)) on Q
17: delete w
18: Reorganize(G, Q)

4.2 Searching with rewrite graphs

With the machinery of the reduced rewrite graph in place, our view of search
changes a bit. We will use a reduced rewrite graph to represent the formulas
discovered by searching.

The search starts with an input formula f , and a rewrite graph consisting of a
single Q-node r such that S(r) = {f}. As before, each search iteration consists
of choosing a formula g and generating all the subformulas produced by applying
rewrite operators to g. The difference is that the formula we choose is not, in
general, equivalent to the input f . Instead, it is an element of S(u) for some
Q-node u in the rewrite graph. if a new formula h is generated that has no
disjunctions, it simply gets added to S(u). If a new formula h1 ∨ · · · ∨ hk is
generated, a new OR-node child of u is created, and for each hi, a new Q-node
vi, where S(vi) = {hi}, is created, all of which are children of the new OR-node.

12

Subformulas produced by rewrite operators may be normalized to false (or
true if we’re really lucky, since the entire search can be terminated and true
returned at that point), or may be normalized to a formula that has already
been generated. Either event triggers a reorganization of the rewrite graph along
the lines of Algorithm 3 in order to keep it reduced. This reorganization never
creates new formulas, it merely moves them to different nodes, or removes them
from the graph altogether.

Search terminates when there are no subformulas in nodes that have not already
been rewritten using the rewrite operators. At this point, the rewrite graph
implicitly represents all the rewritings generated by the given operators. From
it, we can very easily pull out the rewriting that maximizes any grading function
that distributes over disjunctions, e.g. a function satisfying p(f ∨ g) = p(f) +
p(g).

Search based on rewrite graphs is a vast improvement over the generic AI-
inspired search for two reasons: 1) we avoid the inefficiencies outlined in Sec-
tion 2, and 2) we are able to expoit information discovered during the search to
throw out subformulas — often before they are ever rewritten.

5 Implementation: qfr

We have implemented the approach described above in a program called qfr —
quantified formula rewriting. The program makes some assumptions that are
not required by the framework described above, most notably that polynomials
are always kept in fully factored form, and that sets associated with Q-nodes
contain no disjunctions. These design decisions simplified the system, but limit
it to some extent. Additionally, our framework requires three components:

1. a normalizer,

2. a set of rewrite operators, and

3. a mechanism for choosing the next formula to process.

Several good normalization and/or rewrite operations come from the discussion
of formula simplification in [7], and the descriptions of the method of quantifier
elimination by virtual term substitution given in [14].

13

5.1 The normalizer

The role of the normalizer is two-fold: making formulas that are essentially
identical syntactically identical (and thus easy to identify as “the same”), and
discovering unsatisfiable formulas. In fact, it’s probably desirable to separate
these two activities, though qfr doesn’t. We identified four different “levels” of
simplification. Levels 1 and 2 assume that atomic formulas are the fully factored
form p1p2 · · · pkσ0, but never examine the factors themselves. Levels 3 and 4 try
to deduce information about the factors themselves. Normalization operates on
a conjunction.

1. Level 1 normalization simplifies atomic formulas individually: removing
content, eliminating exponents from = and 6=, normalizing all exponents
to 1 and 2 in ≥ and ≤, splitting > and < into even and odd factors (odds
get exponent 1 and stay in the inequality, evens get exponent 1 as well,
but broken into 6= atoms), and breaking up atoms like p1 · · · pk 6= 0 into
p1 6= 0 ∧ · · · ∧ pk 6= 0.

2. Level 2 normalization assumes Level 1 normalization of atoms, and simpli-
fies the conjunction by merging atomic formulas with the same left-hand
side and, when possible, using (in)equalities on a single factor to simplify
multi-factor (in)equalities — e.g. simplifying x+1 > 0∧ (x+1)(x2 −ax+
b) < 0 to x + 1 > 0 ∧ x2 − ax + b < 0.

3. Level 3 simplification attempts to determine sign conditions of variables
implied by the formula, and use those sign-conditions to determine whether
sign-conditions on some factors are implied by the formula. For example,
given x − 1 > 0 ∧ x + y2 + 1 < 0, Level 3 normalization would deduce
that x − 1 > 0 implies x > 0. It would then determine that with x > 0,
x + y2 + 1 must be positive, and thus that the formula is unsatisfiable.

4. Level 4 normalization uses the implied sign-conditions on variables along
with sign-conditions on one other factor to try to deduce sign-conditions
on a factor. For example, given x + 1 > 0 ∧ 2x + y2 + 2 < 0, Level 4
normalization would deduce that 2x+ y2 +2−2(x+1) < 0, which implies
y2 < 0, and thus the input is unsatisfiable.

The system allows some control over what normalization gets done, and whether
it is only used for determining unsatisfiability, or whether it is also used for sim-
plification. All levels are very fast relative to polynomial factorization, which is
the biggest bottleneck in the system. Obviously, Level 4 normalization depends
quadratically on the number of factors in the conjunction, which makes it the
most time consuming of the levels. On the other hand, discovering unsatisfi-
able subformulas, or strengthening an inequality into an equality can have an
immense global impact. So it is worth expending some time.

14

There are several other operations that are probably worth incorporating, in-
cluding breaking sums of squares equalities into separate equalities, and using
more sophisticated tests for unsatisfiability.

5.2 The rewrite operators

Rewrite operators generate the space that we search, and thus determine what
we can find. However, too many operators, or operators that generate too
many rewritings can be a problem, as they will swamp the system. Ultimately,
a heuristic guided search of the space should ameliorate such problems. For
purposes of this paper, however, we always search the entire space of rewritings.
The following rewrite operators are in the current version of qfr.

1. Splitting multi-factor equalities:

(

Πk
i=1pi = 0

)

∧ F −→ ∨k
i=1 (pi = 0 ∧ F)

2. Linear substitution:

ax + b = 0 ∧ F −→
(

a 6= 0 ∧ F |x←−b/a

)

∨ (a = 0 ∧ b = 0 ∧ F)

3. Linear substitution for xk: if x only occurs in F to powers that are mul-
tiples of k, and t = (k + 1) mod 2 then

axk + b = 0 ∧ F −→
(

a 6= 0 ∧ F |xk←−b/a ∧ tba < 0
)

∨ (a = 0 ∧ b = 0 ∧ F)

4. Linear S-polynomial reduction:

f = 0 ∧ g = 0 ∧ F −→ af − bg = 0 ∧ g = 0 ∧ F,

where a, b ∈ Z − {0}, and af − bg is linear in some quantified variable x,
but neither f nor g are linear in x.

Linear substitution and factor splitting are the most obvious operators. Linear
substitution for xk has been identified as crucial by the implementors of Redlog.
Linear S-polynomial reduction is there by virtue of the fact that it is something
that we’ve used by hand in the past. It would be interesting to look at a
more general idea of this kind, i.e. Gröbner style reduction by equations to
produce linear polynomials that can be substituted. However, the complexity
increases when more polynomials can be involved, and multiplying by non-
constant factors generates more case distinctions. So adding such an operator
would have to be carefully thought out.

15

5.3 Controlling the search

The basic mechanism behind the search in qfr is a priority queue of subformulas.
The program is essentially no more than a loop consisting of 1) dequeuing a
formula, 2) applying all relevant operators to that formula, 3) adding formulas
the queue (if they are new) and to the rewrite graph, and 4) reorganizing the
rewrite graph as needed.

The priority queue in the version of qfr described here simply follows a fewest-
quantified-variables-first rule, with ties broken by the printed length of the for-
mula. Once the entire space has been searched, we print out the “best” rewriting
based on a simple grading scheme — although determining what is the “best”
rewriting implicit in the graph is outside the scope of this paper.

6 Performance on example problems

The fundamental question for this report is whether or not the system can
search the entire space of formula rewritings for interesting sized input formulas,
and how large that space is. We will focus on a few example problems. and
demonstrate that it can in many instances. Moreover, we’ll see instances in
which it does better than QEPCADB, Redlog or Mathematica individually. All
timings given are on a 1.6 GHz Pentium with 512MB of memory.

6.1 The SEIT Problem

First we consider the example from the introduction: the system of equations
arising from finding the equilibrium points of the SEIT model described in the
introduction. As a disclaimer, it should be pointed out that the inability of
QE software to handle this problem motivated the present work. So the fact
that qfr does a good job with it shouldn’t be too surprising. Hopefully it is
an instructive illustration none the less. Recall that this quantifier elimination
problem is:

∃S, E, I, T

d − dS − β1IS = 0 ∧ vE − (d + r2)I = 0∧
β1IS + β2IT − (d + v + r1)E + (1 − q)r2I = 0∧
−dT + r1E + qr2I − β2TI = 0 ∧ E > 0 ∧ I > 0 ∧ T > 0 ∧ S > 0

where d > 0 ∧ v > 0 ∧ r1 > 0 ∧ r2 > 0 ∧ q > 0 ∧ β1 > β2 > 0

qfr is able to search the entire space of rewritings of this problem with the given
operators in 87 seconds. The rewrite graph grows and contracts in the process,

16

Figure 2: Rewrite graph resulting from searching the full space of rewritings for
the SEIT problem.

as Q-nodes are discovered to be false or distinct Q-nodes are discovered to be
equivalent. In the end, the graph (see Figure 2) contains just 10 Q-nodes and six
OR-nodes, with 759 conjunctions distributed across the Q-nodes. It represents
118,535 distinct rewritings — and that is, of course, after having thrown away
many disjuncts that it discovered to be unsatisfiable or redundant. The “best”
formulation found is

∃s

s > 0 ∧ s − 1 < 0 ∧ β1sqr2v + β1s
2β2v − dsβ2v − β1sβ2v + dβ2v − β2

1s2v
+β1dsv + β1sr1r2 − dsβ2r2 + dβ2r2 + β1dsr2 + β1dsr1 − d2sβ2

+d2β2 + β1d
2s = 0∧

β1 > 0 ∧ β2 > 0 ∧ d > 0 ∧ v > 0 ∧ r1 > 0 ∧ r2 > 0 ∧ q > 0 ∧ β2 − β1 < 0

,

and, in fact, qfr finds that rewriting less than a second into its search. QEP-
CADB is able to solve this formulation quite easily and with the simplest pos-
sible answer, provided the conditions on the free variables are passed along as
“assumptions”. Redlog and Mathematica solve the above QE problem instantly
as well, but with larger formulas.

17

6.2 The Joswig–Witte Problem

In [10], the truth of a certain conjecture in shown to depend upon the satisfia-
bility of the following system of equations and constraints:

∃s, x1, x2, x3, x4

1 + s2x1x3 + s8x2x3 + s19x1x2x4 = 0
∧
x1 + s8x1x2x3 + s19x2x4 = 0
∧
x2 + s11x1x4 + s10x3x4 = 0
∧
s4x1x2 + x3 + s19x1x3x4 + s24x2x3x4 = 0
∧
x4 + s31x1x2x3x4 = 0
∧
0 < s < 1

.

The high degrees of s in this system makes it difficult to solve. Even computing
a Gröbner basis requires many hours and the right program. qfr is able to
search the entire space of rewritings for this problem in less than 5 1/2 minutes.
The “best” rewriting it discovers isXS

∃s, x1

[

s > 0 ∧ s − 1 < 0 ∧ x1 6= 0 ∧ x1 + 1 6= 0 ∧ x1 − 1 6= 0
∧s23x1 − 1 6= 0 ∧ P = 0 ∧ Q = 0

]

,

where P and Q are relatively large polynomials in s and x1. This two variable
system is found to be unsatisfiable in 135 seconds by cad2d, a special version of
QEPCADB that is optimized for 2D CAD construction. For technical reasons2,
we must add the constraint resx1

(P, Q) = 0 to the system, otherwise cad2d

doesn’t restrict its lifting to the points at which resx1
(P, Q) vanishes, as it ob-

viously should. Essentially, the 2-variable system is solved by: 1) isolating roots
of the resultants, 2) throwing away those that fall outside s-interval (0, 1), 3)
for each remaining root α constructing interval polynomials containing P (α, x1)
and Q(α, x1), 4) isolating the roots of these interval polynomials, and 5) verify-
ing that the isolating intervals for the two polynomials are disjoint. The interval
Descartes root isolation method described in [6], for example, is able to do this
quite quickly.

Figure 3 shows the final rewrite graph for this problem. It consists of 20 OR-
nodes and 41 Q-nodes containing 1841 conjunctions. In this case the graph is a
tree, it represents 12,191 distinct rewritings of the input. The tree is less than
half the size if we don’t use the “linear S-polynomial” rewriting operator, and
the “best” rewriting is unchanged. This gives some indication that ramping
up the number of operators available is likely to make a heuristic approach to

2Equational constraints are not implemented in cad2d, which is why the propagated con-
straint resx1

(P, Q) must be added to the formula explicitly by hand.

18

Figure 3: Rewrite graph resulting from searching the full space of rewritings for
the Joswig–Witte problem.

limiting the search more necessary. It’s also worth pointing out, that much of
the work of the search went into exploring cases that were eventually found to
be unsatisfiable, and those portions of the graph were then removed.

6.3 The Wang–Xia Problem

In [13], Wang & Xia analyze a system of five equations in five variables, with
inequality side constraints, and a single parameter, v. The system describes the
equilibrium points of a biological model. The system was “solved” in the fol-
lowing sense: the positive v axis was decomposed into intervals, inside of which
the number of solutions to the system was constant as v varied. The approach
was based on computing “border polynomials” [16]. No timing information was
given.

The system they considered is the following:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

150000vz3 + 750vz3x − 599999x + 200 = 0
∧

625y
2

1 + 750000y3 + 625y3y1 + 19200xy1 − 8xy
2

1 − 8xy1y3 − 900000000 = 0
∧

−11520000x + 9600xy1 + 8xy1y3 + 8xy
2

3 + 1500000y3 − 625y3y1 − 625y
2

3 = 0
∧

250z
2

1 + 75000z3 + 250z3z1 + 1800y3z1 − 3y3z
2

1 − 3y3z1z3 − 22500000 = 0
∧

−270000y3 + 900y3z1 + 3y3z1z3 + 3y3z
2

3 + 150000z3 − 250z3z1 − 250z
2

3 = 0
∧

x ≥ 0 ∧ y1 ≥ 0 ∧ y3 ≥ 0 ∧ z1 ≥ 0 ∧ z3 ≥ 0 ∧ 1200 − y1 − y3 ≥ 0 ∧ 300 − z1 − z3 ≥ 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

They were interested in the solutions to this system in the parameter v. By
keeping track of the operators applied during search, qfr is actually able to
produce solutions to the original problem from solutions to the simplified prob-
lem, even when its rewriting steps eliminate quantifiers — at least for the set of
rewrite operators considered here. Quantifying all variables but v in the above

19

system, qfr searches the whole space in 64 seconds, producing as its “best”
formula

y3 > 0 ∧ z3 > 0
∧
(750vz3 − 599999)(66750vz3y3 − 14999911y3 + 57600000vz3 + 76800) < 0
∧
27z3

3y
3
3 + 8100z2

3y
3
3 − 2430000z3y

3
3 − 729000000y3

3

−2250z3
3y

2
3 + 675000z2

3y
2
3 + 405000000z3y

2
3

−187500z3
3y3 + 56250000z2

3y3 + 33750000000z3y3

+15625000z3
3 − 14062500000z2

3 = 0
∧
3z2

3y3 − 270000y3 − 250z2
3 + 150000z3 < 0

∧
3z3y3 + 900y3 − 250z3 > 0
∧
(66750vz3y

2
3 − 14999911y2

3 − 45000000vz3y3

+35999940000y3 − 69120000000vz3 − 92160000)
(66750vz3y3 − 14999911y3 + 57600000vz3 + 76800) < 0
∧
43441734375000v3z3

3y
3
3 + 2753611266937500v2z2

3y3
3

−7818742657268310750vz3y
3
3 + 1124989575004895102973y3

3

+41616956250000000v3z3
3y

2
3

−15960208532175000000v2z2
3y

2
3

+19507457439221957100000vz3y
2
3

−4049973990028373901352400y2
3

−78356160000000000000v3z3
3y3

+7257286575360000000000v2z2
3y3+

10368019353182100480000000vz3y3

+13824012902214266880000y3 − 63700992000000000000000v3z3
3

−254803968000000000000v2z2
3

−339738624000000000vz3 − 150994944000000 = 0

This result was obtained by making the following substitutions:

x = 625y3(−2400+y3+y1)
8(y3+1200)(y3+y1−1200)

z1 = −−270000y3−250z2

3
+150000z3+3z2

3
y3

3z3y3+900y3−250z3

y1 = − 66750vz3y2

3
−14999911y2

3
−45000000vz3y3+35999940000y3−69120000000vz3−92160000

66750vz3y3−14999911y3+57600000vz3+76800

It is important to note that during this search process qfr deduced that the
original system implies that the denominators in each of these substitution ex-
pressions are non-zero.

QEPCADB can be used to “solve” the system in the same sense as Wang–Xia’s
solution: namely that the v-axis is decomposed into open intervals in which the
number of real solutions is constant (In fact, on each interval the solutions are

20

defined by a finite set of real-valued functions of the interval.), and the system
is solved at a sample value for v from each interval. This requires less than 90
seconds.

To understand the value of the rewriting, we first note that QEPCADB is un-
able to solve the original formulation of the problem — even when given the
measure-zero-erroroption, which corresponds to Wang–Xia’s ignoring finitely
many values of v. Redlog 3.1 gives an “Arithmetic exception” error and fails
— using rlgqe, the “generic” quantifier elimination option. Mathematica fails
to give an answer after more than 4 hours — although, in fairness, we are un-
aware of any way to indicate to it that finitely many v values may be ignored.
QEPCADB, as mentioned, can solve the rewritten system, and Mathematica
doubtless could as well if there were a way to tell it to solve the problem “gener-
ically”, i.e. not to lift over section cells in v-space.

To demonstrate that finding this rewriting is not trivial, we consider asking
Redlog and Mathematica to eliminate {y1, z1, x} from the original input. Both
require about one second to compute a result. Redlog eliminates x and z1,
but not y1, and returns a formula consisting of 50729 characters (not counting
whitespace). Mathematica eliminates all three variables, returning a formula
consisting of 26683 characters. The formula returned by qfr consists of 875
characters.

6.4 Computing possible branch cuts

This example stems from the approach developed in [2, 1] for simplification of
expressions containing inverse elementary functions. The question is to deter-
mine potential branch cuts for the function

√√
p −√

q

where p, q ∈ C. “Potential branch cuts” consist of the union of the cuts for√
p and

√
q along with the points in pq-space that get mapped by

√
p −√

q to
the negative real axis, or zero. The later set is characterized by the following
formula, which represents a complex number as the ordered pair given by its
real and imaginary parts. Note: variable u represents

√
p, and v represents

√
q.

∃Ru, Iu, Rv, Iv

Rp = R2
u − I2

u ∧ Ip = 2RuIu ∧ [Ru > 0 ∨ Ru = 0 ∧ Iu >= 0]
∧
Rq = R2

v − I2
v ∧ Iq = 2RvIv ∧ [Rv > 0 ∨ Rv = 0 ∧ Iv >= 0]

∧
Iu − Iv = 0 ∧ Ru − Rv <= 0

After 3 seconds, qfr completes the search of the entire space of rewritings.
The rewrite graph consists of two OR-nodes and six Q-nodes containing 185

21

conjunctions. The “best” rewriting is given by the disjunction of four quantified
formulas:

∃Ru, Rv

[

Ru > 0 ∧ Rv > 0 ∧ Rv − Ru >= 0 ∧ Ip = 0 ∧ Iq = 0∧
R2

v − Rq = 0 ∧ R2
u − Rp = 0

]

∨
∃Iv

[

(Iv)(Ip) > 0 ∧ (Iv)(Iq) > 0 ∧ (Iv)(Iq − Ip) >= 0∧
I2
q − 4I2

vRq − 4I4
v = 0 ∧ 4I4

v + 4RpI
2
v − I2

p = 0

]

∨
∃Iv[Iv > 0 ∧ Ip = 0 ∧ Iq > 0 ∧ I2

q − 4I2
vRq − 4I4

v = 0 ∧ I2
v + Rp = 0]

∨
∃Iv

[

Iv > 0 ∧ Ip = 0 ∧ Iq = 0 ∧ I2
q − 4I2

vRq − 4I4
v = 0∧

4I4
v + 4RpI

2
v − I2

p = 0 ∧ Iq − Ip = 0

]

At first blush, this might not seem like much of an improvement, but QEP-
CADB solves each piece of this extremely quickly, providing a simple solution;
Mathematica quickly gives an answer answer that’s about half the size of what
it produces from the original input; and Redlog quickly produces a formula
consisting of two simple quantifier-free pieces and two simple pieces with one
quantified variable, as opposed to the formula consisting of six pieces, each with
one quantified variable.

6.5 The REMIS-Patterson problem: poor performance

When qfr’s rewrite operators simply don’t apply, for example formulas with-
out equalities, the whole approached described here has nothing to offer. On
the other hand, it also takes no time to run it and discover that fact. Poor
performance is when the program runs for a long time without discovering in-
teresting reformulations of the problem. In this paper, we are not so much
aiming at finding good formulations quickly, as at exploring the entire space of
reformulations. It is fully expected that the incorporation of some heuristics to
rule out unpromising regions of the search space would drastically reduce the
search time, without significantly degrading the quality of rewritings discovered.
However, without such heuristics, we must regard a problem for which the time
to search the whole space is “unreasonably large” as providing an example on
which the algorithm performs poorly.

The REMIS data-base3 includes many real quantifier elimination problems. One
of these is the “Patterson Problem” [8]. The existential formulation of this

3http://www.algebra.fim.uni-passau.de/~redlog/remis/

22

problem is:

∃x1, x2, x3, x4

(y − u3)x2 + (−x + u2)x1 − u2y + u3x = 0 ∧ 2u1x2 − u2
1 = 0

∧
yx4 + (−x + u1)x3 − u1y = 0 ∧ 2u2x4 + 2u3x3 − u2

3 − u2
2 = 0

∧
(u1u3x2 + u1u2x1)x4 + (−u1u2x2 + u1u3x1)x3

+(−u1u
2
3 − u1u

2
2)x1 6= 0

.

This formula is in some sense set up for qfr to perform poorly. It models a ge-
ometric configuration, but leaves out all the non-degeneracy conditions — this
was purposely done to demonstrate how Redlog’s “generic” quantifier elimina-
tion discovers non-degeneracy conditions for itself. If we add those conditions
(u1u2 − u2x − u3y 6= 0 ∧ u2 − x 6= 0 ∧ y 6= 0), qfr performs acceptably. It
searches the entire space of rewritings in 27 seconds, producing a search tree
with 23 OR-nodes and 1176 conjunctions distributed across 27 Q-nodes.

However, without the non-degeneracy conditions, qfr takes about 17 minutes
to complete its search — spending all that extra time exploring portions of
the space of rewritings that correspond to cases that are simply not of interest.
Moreover, because the only operator qfr has for eliminating quantified variables
applies only to equations, it returns a large formula in which many disjuncts
have quantified variables that can be eliminated trivially — for example:

∃x3[x − u2 6= 0 ∧ u1 − x = 0 ∧ y = 0 ∧ u3 = 0 ∧ u2 6= 0 ∧ x 6= 0 ∧ x3 6= 0]

For humans, “∃x3[x3 6= 0]” is pretty easily recognized as true! Since the basic
approach of this work has been to ensure that the program can at least do the
things that people can easily do, we should add a rewrite operator that does
quantifier elimination for subformulas of the form ∃x[ax + b σ 0] even when σ
is not “=”.

7 Conclusions and Future Work

This paper paper considers the problem of finding rewritings of quantified input
formulas that make good inputs to quantifier elimination programs. The essen-
tial motivation for this is the observation that quantifier elimination algorithms
do not do a good job of exploiting problem structure, and that by rephrasing
QE problems, experts are often able to make more effective use of QE software.
We have presented a data structure, the “rewrite graph”, and an algorithm
based on that data structure that explores the space of rewritings of the input
formula induced by a set of rewrite operators. We have shown that even for
some non-trivial problems, the method is able to explore the entire space of
rewritings and discover good rewritings.

23

There are many directions for future work — first and foremost is to investigate
heuristic methods for guiding the search for rewritings. Ultimately we would
like to find good answers without having to search the entire space of rewritings.
A heuristically guided approach is likely to become increasingly necessary as the
number of rewrite operators available to the system grows.

Another direction for work concerns the “next step” — i.e. the passing on to
one or more QE systems of pieces of the reformulated problem. It may be better
not to keep the search for rewritings and the use of QE algorithms separate.
Instead, as qfr recognizes that a node contains a quantified formula that would
be particularly easy for an available system, it could simply call the system
directly on that node. The result of the QE — particularly if that node is found
to be unsatisfiable — could have a big impact on the subsequent search.

References

[1] Beaumont, J., Bradford, R., Davenport, J., and Phisanbut, N.

Adherence is Better Than Adjacency. In Proceedings ISSAC 2005 (2005),
M. Kauers, Ed., pp. 37–44.

[2] Bradford, R., and Davenport, J. H. Towards better simplification
of elementary functions. In Proc. of the 2002 international symposium on
Symbolic and algebraic computation (New York, NY, USA, 2002), ACM
Press, pp. 16–22.

[3] Brown, C. W., and Gross, C. Efficient preprocessing methods for
quantifier elimination. In CASC (2006), pp. 89–100.

[4] Caviness, B., and Johnson, J. R., Eds. Quantifier Elimination and
Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic
Computation. Springer-Verlag, 1998.

[5] Collins, G. E. Quantifier elimination for the elementary theory of real
closed fields by cylindrical algebraic decomposition. In Lecture Notes In
Computer Science (1975), vol. Vol. 33, Springer-Verlag, Berlin, pp. 134–
183. Reprinted in [4].

[6] Collins, G. E., Johnson, J. R., and Krandick, W. Interval arith-
metic in cylindrical algebraic decomposition. Journal of Symbolic Compu-
tation 34, 2 (2002), 145–157.

[7] Dolzmann, A., and Sturm, T. Simplification of quantifier-free formulae
over ordered fields. Journal of Symbolic Computation 24, 2 (Aug. 1997),
209–231. Special Issue on Applications of Quantifier Elimination.

24

[8] Dolzmann, A., Sturm, T., and Weispfenning, V. A new approach
for automatic theorem proving in real geometry. Journal of Automated
Reasoning 21, 3 (1998), 357–380.

[9] Heintz, J., Roy, M., and Solernó, P. Sur la complexité du principe
de Tarski-Seidenberg. Bull. Soc. Math. France 118 (1990), 101–126.

[10] Joswig, M., and Witte, N. Products of foldable triangulations. to
appear in Adv. Math., 2005.

[11] Tarski, A. A Decision Method for Elementary Algebra and Geometry.
University of California Press, Berkeley, 1951. second ed., rev. Reprinted
in [4].

[12] van den Driessche, P., and Watmough, J. Reproduction numbers
and sub-threshold endemic equilibria for compartmental models of disease
transmission. Mathematical Biosciences 180 (2002), 29–48.

[13] Wang, D., and Xia, B. Stability analysis of biological systems with real
solution classification. In Proc. International Symposium on Symbolic and
Algebraic Computation (2005), pp. 354–361.

[14] Weispfenning, V. Quantifier elimination for real algebra — the quadratic
case and beyond. AAECC 8 (1997), 85–101.

[15] Weispfenning, V. A new approach to quantifier elimination for real al-
gebra. In Quantifier Elimination and Cylindrical Algebraic Decomposition
(1998), B. Caviness and J. Johnson, Eds., Texts and Monographs in Sym-
bolic Computation, Springer-Verlag, Vienna.

[16] Yang, L., and Xia, B. Real solution classifications of semi-algebraic
systems. In Algorithmic Algebra and Logic — Proceedings of the A3L 2005
(2005), A. Dolzmann, A. Seidl, and T. Sturm, Eds., Herstellung und Verlag,
Norderstedt, pp. 281–289.

8 Appendix

Lemma 1 Let G = (V, E) be a directed acyclic graph. Let u and v be vertices
such that there is no path from v to u. If S is the set of all vertices along paths
from v to u, then the graph G′ obtained from G by contracting V ′ ∪ {u, v} into
a single new vertex x (cutting out edges from x back into x) is a DAG.

Proof. Suppose G′ has a cycle w1, . . . , wk. The cycle must contain vertex
x since, otherwise, the same vertices would form a cycle in G. Let wi = x.
Thus, there exist vertices a, b ∈ V ′ ∪ {u, v} such that w1, . . . , wi−1, a and and

25

b, wi+1, . . . , wk, w1 are paths in G. Let Pb be the path from u to b in G, and let Pa

be the path from a to v in G. Then Pb → wi+1, . . . , wk, w1, w2, . . . , wi−1 → Pa

is a path from u to v in G. Thus, w1 = w2 = · · · = wk = x, i.e. the cycle is an
edge from x back into x, which is a contradiction.

26

